13 resultados para Mice, Knockout

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently we have shown that growth hormone (GH) inhibits neuronal differentiation and that this process is blocked by suppressor of cytokine signalling-2 (SOCS2). Here we examine several cortical and subcortical neuronal populations in GH hyper-responsive SOCS2 null (-/-) mice and GH non-responsive GH receptor null (GHR-/-) mice. While SOCS2-/- mice showed a 30% decrease in density of NeuN positive neurons in cortex compared to wildtype, GHR-/- mice showed a 25% increase even though brain size was decreased. Interneuron sub-populations were variably affected, with a slight decrease in cortical parvalbumin expressing interneurons in SOCS2-/- mice and an increase in cortical calbindin and calretinin and striatal cholinergic neuron density in GHR-/- mice. Analysis of glial cell numbers in cresyl violet or glial fibrillary acidic protein (GFAP) stained sections of cortex showed that the neuron: glia ratio was increased in GHR-/- mice and decreased in SOCS2-/- mice. The astrocytes in GHR-/- mice appeared smaller, while they were larger in SOCS2-/- mice. Neuronal soma size also varied in the different genotypes, with smaller striatal cholinergic neurons in GHR-/- mice. While the size of layer 5 pyramidal neurons was not significantly different from wildtype, SOCS2-/- neurons were larger than GHR-/- neurons. In addition, primary dendritic length was similar in all genotypes but dendritic branching of pyramidal neurons in the cortex appeared sparser in GHR-/- and SOCS2-/- mice. These results suggest that GH, possibly regulated by SOCS2, has multiple effects on central nervous system (CNS) development and maturation, regulating the number and size of multiple neuronal and glial cell types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vitamin D (calcitriol) is a nuclear transcription regulator acting via a nuclear hormone receptor (VDR). In addition to its role in the regulation of calcium and phosphate horneostasis and in bone formation, Vitamin D is also thought to be involved in brain function. The aim of this study was to behaviourally phenotype VDR knockout mice. We characterized the behaviour of VDR null mutant mice and wildtype littermate controls by subjecting them to a range of tests including a primary behavioural screen (using the SHIRPA protocol), rotarod, gait analysis, Y-maze, marble burying test, bedding test, holeboard test, elevated plus maze, open field test and prepulse inhibition of the acoustic startle response. There were no effects of genotype on most of the scores from the SHIRPA protocol except that VDR -/- mice had alopecia, were shorter and weighed less than VDR +/+ mice. VDR -/- mice had a shorter gait as well as impairments on the rotarod, in the bedding test and impaired habituation in both the open field and on the acoustic startle response. The VDR -/- mice had normal acoustic startle responses but had impaired PPI at long (256 ms) but not short (64 ms) prepulse to pulse intervals. The VDR -/- mice were less active in the open field and buried fewer marbles in the marble burying test. However, there were no differences in the time spent on the open arms of the elevated plus maze or in working memory as assessed by repeat arm entries on the Y-maze. Therefore, it appears that VDR -/- mice have muscular and motor impairments that significantly affects locomotor behaviour but seemingly no impairments in cognition as indicated by exploration, working memory or anxiety. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Animal experiments have shown that Vitamin D plays a role in both brain development and adult brain function. The adult Vitamin D receptor null mutant mouse (VDR -/-) is reported to be less active and more anxious than wild-type litter mate controls and to have poor swimming ability. However, an anxious behavioural phenotype is inferred from differences in locomotor behaviour. This is a general problem in behavioural phenotyping where a neurological phenotype is inferred from changes in locomotion which will be affected by non-neurological factors, such as muscle fatigue. In this study of VDR -/-, we conducted a detailed examination of one form of motor behaviour, swimming, compared to wildtype littermate controls. Swimming was assessed using a forced swim test, a laneway swimming test and a watermaze test using a visible platform. Post-swimming activity was assessed by comparing grooming and rearing behaviour before, and 5 min after, the forced swimming test. We replicated previous findings in which VDR -/- mice demonstrate more sinking episodes than wildtype controls in the forced swim test but they were similar to controls in the time taken to swim a 1 m laneway, and in the time taken to reach a visible platform in the watermaze. Thus, the VDR -/- mice were able to swim but were not able to float. Grooming and rearing behaviour of the VDR -/- mice was similar to wildtype controls before the forced swim but the VDR -/- were much less active after the swim compared with wildtype mice which displayed high levels of grooming and rearing. We conclude that VDR -/- mice have muscular and motor impairments that do not affect their ability to swim but significantly alters the ability to float as well as their post-swimming activity. Differences in muscle strength may confound tests of activity that are used to infer an anxious phenotype. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The patched gene (Ptc) is a member of the hedgehog signaling pathway which plays a central role in the development of many invertebrate and vertebrate tissues. In addition, Ptc and a number of other pathway members are mutated in some common human cancers. Patched is the receptor for the hedgehog ligand and in the mouse ablation of the Ptc gene leads to developmental defects and an embryonic lethal phenotype. Here we describe a conditional Ptc allele in mice which will have utility for the temporospatial ablation of Ptc function. genesis 36:158-161, 2003. (C) 2003 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth hormone (GH) secretion affects bone and cartilage physiology. This study investigated the effect of GH on the size of the craniofacial structures and their angular relationship. Three different models of mice with a genetically altered GH axis were used: GH excess (giant), dwarf GH antagonist (dwarf-Ant), and dwarf GH receptor knockout (dwarf-KO) mice. Each model was compared with the corresponding wild type (Wt). Five craniofacial distances were analysed: craniofacial length, upper face height, mandibular anterior height, mandibular ramus length, and mandibular corpus length. In addition, upper and lower incisor lengths and four angular relationships, nasal bone with cranial base, maxillary plane with cranial base, mandibular plane with cranial base, and the angle of the mandible, were determined. Data were analysed by one-way ANOVA. Craniofacial length, upper face height and mandibular corpus length were significantly increased in the giant mice and significantly reduced in the dwarf mice. Mandibular anterior height and mandibular ramus length were significantly affected in the dwarf-KO mice but not in the giant mice. The length of both the upper and lower incisors was significantly increased and reduced in the giant and dwarf-KO mice, respectively. In addition, the angle of the mandible was significantly increased in the giant mice and significantly reduced in the dwarf mice. It is concluded that GH plays a major role in the growth and development of the craniofacial complex by directly and indirectly modulating the size and the angular relationships of the craniofacial structures, including the incisor teeth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout ( Nas1(-/-)) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1(-/-) mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased ( n = 51) or decreased ( n = 41) in Nas1(-/-) mice when compared with Nas1(-/-) mice. The most upregulated transcript levels in Nas1(-/-) mice were found for the sulfotransferase genes, Sult3a1 ( approximate to 500% increase) and Sult2a2 ( 100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes ( 70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated ( >= 30% increase) in Nas1(+/+) mice. In addition, Nas1(+/+) mice exhibited increased levels of hepatic lipid ( approximate to 16% increase), serum cholesterol ( approximate to 20% increase), and low-density lipoprotein ( approximate to 100% increase) and reduced hepatic glycogen ( approximate to 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1(-/-) mouse and provide new insights into the metabolic state of the liver in Nas1(-/-) mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germ cells in the mouse embryo can develop as oocytes or spermatogonia, depending on molecular cues that have not been identified. We found that retinoic acid, produced by mesonephroi of both sexes, causes germ cells in the ovary to enter meiosis and inititate oogenesis. Meiosis is retarded in the fetal testis by the action of the retinoid-degrading enzyme CYP26B1, ultimately leading to spermatogenesis. In testes of Cyp26b1-knockout mouse embryos, germ cells enter meiosis precociously, as if in a normal ovary. Thus, precise regulation of retinoid levels during fetal gonad development provides the molecular control mechanism that specifies germ cell fate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis. The full text of this article is available at http://www.circresaha.org.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oropharyngeal candidiasis is a common clinical problem encountered in patients with defects in innate or cell-mediated immunity. We have previously shown that recovery from chronic oropharyngeal candidiasis is dependent on CD4+ T-cell augmentation of neutrophil and macrophage candidacidal activity, and that the immune response is characterised by the production of cytokines such as IL-12 and IFN-gamma by cells in the local draining lymph nodes, and by the expression of TNF-alpha in the oral tissues. Objective: The purpose of this study was to elaborate on the role of these cytokines in recovery from oropharyngeal candidiasis, by using cytokine-specific gene-knockout mice. Methods: These mice are created by targeted gene mutation (tm1) of embryonic stem (ES) cells microinjected into host embryos. IL-4, IL-10, IL-12, IFN-gamma and TNF-alpha knockout mice, and appropriate controls, were infected orally with 108 viable C. albicans yeasts. The infection was quantified by swabbing the oral cavity and plating on Sabouraud's agar. Results: Tnftm1mice developed an acute severe infection characterized by an increased fungal load in the early stages of infection, but cleared the yeast within the same time frame as control mice (21 days). On the other hand, Il12btm1 mice developed a chronic oropharyngeal infection (120 days) similar to that seen in T-cell deficient (Foxn1nu/Foxn1nu) mutant mice. There was no significant difference between Il4tm1, Il10tm1, and Ifngtm1 mice and their respective controls. Conclusions: Tnftm1 mice may be rendered more susceptible through impaired recruitment of phagocytic cells, and/or impaired killing of C. albicans, whereas Il12btm1 mice may not be capable of activating naïve T-cells or inducing an appropriate cellular immune response. Supported by NHMRC and ADRF.